Uniform Asymptotic Bound on the Number of Zeros of Abelian Integrals

نویسنده

  • Alexei Grigoriev
چکیده

We give a uniform asymptotic bound for the number of zeros of complete Abelian integrals in domains bounded away from infinity and the singularities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS

We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

Simple Exponential Estimate for the Number of Real Zeros of Complete Abelian Integrals

One of the main results of this paper is an upper bound for the total number of real isolated zeros of complete Abelian integrals, exponential in the degree of the form (Theorem 1 below). This result improves a previously obtained in [IY1] double exponential estimate for the number of real isolated zeros on a positive distance from the singular locus. In fact, the theorem on zeros of Abelian in...

متن کامل

Abelian Integrals of Quadratic Hamiltonian Vector Fields with an Invariant Straight Line*

We prove that the lowest upper bound for the number of isolated zeros of the Abelian integrals associated to quadratic Hamiltonian vector fields having a center and an invariant straight line after quadratic perturbations is one.

متن کامل

Polynomial Bounds for Oscillation of Solutions of Fuchsian Systems

We study the problem of placing effective upper bounds for the number of zeros of solutions of Fuchsian systems on the Riemann sphere. The principal result is an explicit (non-uniform) upper bound, polynomially growing on the frontier of the class of Fuchsian systems of a given dimension n having m singular points. As a function of n, m, this bound turns out to be double exponential in the prec...

متن کامل

Bounded Decomposition in the Brieskorn Lattice and Pfaffian Picard–fuchs Systems for Abelian Integrals

We suggest an algorithm for derivation of the Picard–Fuchs system of Pfaffian equations for Abelian integrals corresponding to semiquasihomogeneous Hamiltonians. It is based on an effective decomposition of polynomial forms in the Brieskorn lattice. The construction allows for an explicit upper bound on the norms of the polynomial coefficients, an important ingredient in studying zeros of these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003